HACS-Z Series

p. 1 of 3

The HACS-Z provides a wide range of capacitance in increments as low as 1 pF and a total capacitance of up to 10,000 µF. With its high

- High accuracy: 0.05% or 0.1%
- Low zero capacitance < 0.1 pF
- Programmable version available
- Trimmable capacitors for lower decades
- 3-Terminal shielded construction
- Excellent stability 100 ppm/yr
- Special high voltage units up to 10 kV
- Excellent TC begins at 20 ppm/°C

(IET)

quality, tight tolerance capacitors, it is an

ideal part of a test or calibration system.

Six Decade HACS-Z Capacitance Substituter

SPECIFICATIONS

Capacitor Type: Air capacitors for 1 and 10 pF steps; stabilized sealed silvered-mica for 100 pF through 100 nF steps. polystyrene capacitors for 1 µF steps; hermetically sealed metallized polycarbonate capacitors for 10

metallized Polyphenylene Sulfide for 100 µF steps;

polypropylene for 1000 μF steps.

1, 10, 100 and 1000 pF decades are trimmable from rear.

Accuracy:

A: $\pm (0.05\% + 0.5 \text{ pF})$; $\pm 0.5\%$ for 100 μ F steps. B: $\pm (0.1\% + 1.0 \text{ pF})$; $\pm 0.5\%$ for 100 μ F steps. [If 1,000 μ F steps are present, accuracy for 6 to 10 μ F at 1 kHz is: $\pm (0.1\% + 0.5 \text{ pF})$

Test Conditions:

1 kHz, for 1 µF steps and under; 100 Hz (equivalent to 120 Hz), for 10 μF steps and over; at 23°C, no zero subtraction; SI traceable.

(Calibration at other frequencies is available, and different frequencies may be selected for different decades.)

Range: 0 to 10,000 µF available, with minimum increments of 1 see table on next page.

Dissipation Factor:

<0.002 for 1 pF and 10 pF steps;

<0.001 for 100 pF steps;

<0.0005 for 1 nF and 2 nF steps;

<0.0003 for 3 nF step through all 0.01 µF steps;

<0.0004 for 0.1 μF steps;

< 0.0007 for 1 µF steps;

<0.007 for 10 µF steps;

<0.005 for 100 µF steps.

Zero Capacitance:

≤0.1 pF, measured with a 3-terminal connection, for units with highest decade steps $\leq 0.1 \, \mu\text{F}$;

 ≤ 2 pF, measured with a 5-terminal connection, for units with highest decade steps1 through 100 μF;

≤10 pF (typically lower), measured with a 5-terminal connection, for units with highest decade steps of 1000 μF.

Insulation Resistance: $>50,000 \text{ M}\Omega$.

Operating Frequency Range: 10 Hz or less to at least 1 MHz, for units with highest decade steps ≤0.1 µF; see chart on pg 2 for frequency performance.

Stability:

A: $\pm (100 \text{ ppm} + 0.1 \text{ pF})$ per year for 0.1 μ F steps and under; ±200 ppm per year for 1 μF and 10 μF steps;

 ± 500 ppm per year for 100 μ F and 1000 μ F steps.

B: $\pm (200 \text{ ppm} + 0.1 \text{ pF})$ per year for 0.1 μ F steps and under; ±500 ppm per year for 1 μF and 10 μF steps; ±1000 ppm per year for 100 µF and 1000 µF steps.

Maximum Voltage:

1 pF through 100 nF steps: 500 V peak max up to 10 kHz;

1 μF steps: 50 V peak max

 $10 \,\mu\text{F}$ and $100 \,\mu\text{F}$ steps: (Vdc+Vac) < $50 \,\text{V}$ or (Vac) < $22 \,\text{V}$, whichever applies first, where Vac=1.8x10⁴/f, and f is frequency in Hz; 1000 μF steps: (Vdc+Vac)< 50 V; Optional: up to 10 kV

Temperature Coefficient:

≈20 ppm/°C for 0.1 μF steps and under; ±50 ppm/°C for 1 μF through 100 μF steps;

-150 ppm/°C for 1000 μF steps;

Operating Temperature Range: 10°C to 40°C.

Shielding: Double shielded construction for units with highest decade steps ≤100 µF.

Connection to Substituter: 2 bnc (standard) or 874 type coaxial connectors (optional) labeled HI and LO on rear panel for units with highest decade $\leq 1 \mu F$ steps.

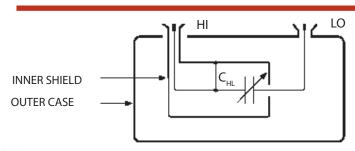
4 binding posts for units with $1~\mu F$ steps and over.

Mechanical:

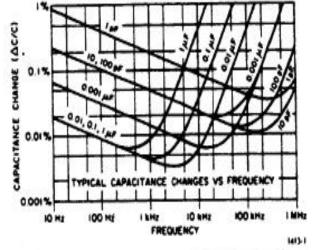
43.2 cm W x 14.2 cm H x 30.4 cm D (17" x 5.6" x 12"), for units with highest decade steps ≤100 nF; 9.5 kg (21 lb)

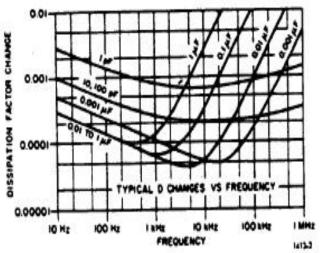
53.3 cm W x 33.0 cm H x 33.0 cm D (21" x 13" x 13"), for 7 decade units.

23.6 kg (52 lb)


HACS-Z Series

p. 2 of 3


DOUBLE SHIELDED CONSTRUCTION


The shielding is divided into two different parts: an inner shield that minimizes the low terminal-to-guard capacitance, and an outer shield (the case) that minimizes the detector input capacitance and noise.

When these two shields are connected together, the HACS-Z becomes an excellent 3-terminal capacitance substituter with low zero capacitance. Applies to units with highest decade ≤ 1 uF steps.

Double Shielded Construction

1 pF - 11,111.111 11 μF 1000 uF decade employs binding posts

HACS-Z Series

p. 3 of 3

ORDERING INFORMATION

STANDARD MODELS

Mo Accuracy 0.05%	dels* Accuracy 0.1%	Total Capacitance	No. of Decades	Resolution
HACS-Z-A-3E-1pF HACS-Z-A-3E-10pF HACS-Z-A-3E-10pF HACS-Z-A-3E-10nF HACS-Z-A-3E-10nF HACS-Z-A-3E-10pF HACS-Z-A-3E-10pF HACS-Z-A-4E-10pF HACS-Z-A-4E-10pF	HACS-Z-B-3E-1pF HACS-Z-B-3E-10pF HACS-Z-B-3E-100pF HACS-Z-B-3E-10nF HACS-Z-B-3E-10nF HACS-Z-B-3E-10nF HACS-Z-B-3E-10pF HACS-Z-B-3E-10pF HACS-Z-B-4E-1pF HACS-Z-B-4E-10pF HACS-Z-B-4E-10pF HACS-Z-B-4E-100pF HACS-Z-B-4E-1nF	1,110 pF 11,100 pF 111,000 pF 1.11 µF 11.1 µF 111 µF 1,110 µF 11,110 µF 0.1111 µF	3 3 3 3 3 3 4 4 4 4	1 pF 10 pF 100 pF 1 nF 10 nF 100 nF 1 μF 10 μF 1 pF 10 pF 100 pF 1 nF
HACS-Z-A-4E-1nF HACS-Z-A-4E-10nF HACS-Z-A-4E-100nF HACS-Z-A-4E-1μF HACS-Z-A-5E-1pF HACS-Z-A-5E-10pF HACS-Z-A-5E-100pF HACS-Z-A-5E-1nF	HACS-Z-B-4E-10nF HACS-Z-B-4E-100nF HACS-Z-B-4E-1µF HACS-Z-B-5E-1pF HACS-Z-B-5E-10pF HACS-Z-B-5E-100pF HACS-Z-B-5E-1nF	11.11 μF 111.1 μF 1,111. μF 11,110 μF 0.111 11 μF 1.111 1 μF 11.111 μF	4 4 4 5 5 5	10 nF 100 nF 1 μF 1 pF 10 pF 100 pF 1 nF
HACS-Z-A-5E-10nF HACS-Z-A-5E-100nF HACS-Z-A-6E-1pF HACS-Z-A-6E-10pF HACS-Z-A-6E-100pF HACS-Z-A-6E-10nF	HACS-Z-B-5E-10nF HACS-Z-B-5E-100nF HACS-Z-B-6E-1pF HACS-Z-B-6E-10pF HACS-Z-B-6E-100pF HACS-Z-B-6E-1nF HACS-Z-B-6E-10nF	1,111.1 μF 11,111 μF 1.111 11 μF 11.111 1 μF 111.111 μF 1,111.11 μF 11,111.1 μF	5 6 6 6 6	10 nF 100 nF 1 pF 10 pF 100 pF 1 nF 10 nF
HACS-Z-A-7E-1pF HACS-Z-A-7E-10pF HACS-Z-A-7E-100pF HACS-Z-A-7E-1nF HACS-Z-A-8E-1pF HACS-Z-A-8E-10pF	HACS-Z-B-7E-1pF HACS-Z-B-7E-10pF HACS-Z-B-7E-100pF HACS-Z-B-7E-1nF HACS-Z-B-8E-1pF HACS-Z-B-8E-10pF	11.111.11 μF 111.111.1 μF 1,111.111 μF 11,111.111 μF 111.111.11 μF 1,111.111.1 μF	7 7 7 7 8 8	1 pF 10 pF 100 pF 1 nF 1 pF 10 pF
HACS-Z-A-8E-100pF HACS-Z-A-9E-1pF HACS-Z-A-9E-10pF HACS-Z-A-10E-1pF	HACS-Z-B-8E-100pF HACS-Z-B-9E-1pF HACS-Z-B-9E-10pF HACS-Z-B-10E-1pF	11,111.111 μF 1,111.111.11 μF 11,111.111.1 μF 11,111.111.1 μF	9 9 10	100 pF 1 pF 10 pF 1 pF

Add suffix:

BCD- for the BCD output option RM- for rack mount option .

